Pseudo Projectively Flat Manifolds Satisfying Certain Condition on the Ricci Tensor

نویسندگان

  • Bandana Das
  • Arindam Bhattacharyya
چکیده

In this paper we consider pseudo projectively flat Riemannian manifold whose Ricci tensor S satisfies the condition S(X,Y ) = rT (X)T (Y ), where r is the scalar curvature, T is a non-zero 1-form defined by g(X, ξ) = T (X), ξ is a unit vector field and prove that the manifold is of pseudo quasi constant curvature, integral curves of the vector field ξ are geodesic and ξ is a proper concircular vector field, manifold is locally product type and it can be expressed as a warped product IXeqM? where M? is an Einstein manifold. 2000 Mathematics Subject Classification: 53C25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

On Para-sasakian Manifolds Satisfying Certain Curvature Conditions with Canonical Paracontact Connection

In this article, the aim is to introduce a para-Sasakian manifold with a canonical paracontact connection. It is shown that φ−conharmonically flat , φ−W2 flat and φ−pseudo projectively flat para-Sasakian manifolds with respect to canonical paracontact connection are all η−Einstein manifolds. Also, we prove that quasi-pseudo projectively flat para-Sasakian manifolds are of constant scalar curvat...

متن کامل

Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection

We study canonical paracontact connection on a para-Sasakian manifold. We prove that a Ricci-flat para-Sasakian manifold with respect to canonical paracontact connection is an η-Einstein manifold.We also investigate some properties of curvature tensor, conformal curvature tensor,W2curvature tensor, concircular curvature tensor, projective curvature tensor, and pseudo-projective curvature tensor...

متن کامل

On - Curvature Tensor in Lp-sasakian Manifolds

Some results on the properties of T -flat, quasiT -flat,  T -flat,  T -flat, T -semi-symmetric,  T Ricci recurrent and T - -recurrent LP-Sasakian manifolds are obtained. It is also proved that an LP-Sasakian manifold satisfying the condition T . 0 S  is an  -Einstein manifold. MSC 2000. 53C15, 53C25, 53C50, 53D15.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010